Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 451

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Results of groundwater pressure and hydro-chemical monitoring as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2022)

Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*

JAEA-Data/Code 2023-014, 118 Pages, 2024/02

JAEA-Data-Code-2023-014.pdf:4.77MB
JAEA-Data-Code-2023-014-appendix(CD-ROM).zip:249.03MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (MIU). This report summarizes the data of the groundwater pressure and hydro-chemical monitoring from boreholes and forth at and around the MIU conducted in FY2022. In addition, unreported hydro-chemical monitoring data from the boreholes and forth at the MIU conducted in FY2021 were also compiled.

Journal Articles

Joint clarification of contaminant plume and hydraulic transmissivity via a geostatistical approach using hydraulic head and contaminant concentration data

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Mathematical Geosciences, 56(2), p.333 - 360, 2024/02

 Times Cited Count:0 Percentile:0.01(Geosciences, Multidisciplinary)

To enable proper remediation of accidental groundwater contamination, the contaminant plume evolution needs to be accurately estimated. In the estimation, uncertainties in both the contaminant source and hydrogeological structure should be considered, especially the temporal release history and hydraulic transmissivity. Although the release history can be estimated using geostatistical approaches, previous studies use the deterministic hydraulic property field. Geostatistical approaches can also effectively estimate an unknown heterogeneous transmissivity field via the joint data use, such as a combination of hydraulic head and tracer data. However, tracer tests implemented over a contaminated area necessarily disturb the in situ condition of the contamination. Conversely, measurements of the transient concentration data over an area are possible and can preserve the conditions. Accordingly, this study develops a geostatistical method for the joint clarification of contaminant plume and transmissivity distributions using both head and contaminant concentration data. The applicability and effectiveness of the proposed method are demonstrated through two numerical experiments assuming a two-dimensional heterogenous confined aquifer. The use of contaminant concentration data is key to accurate estimation of the transmissivity. The accuracy of the proposed method using both head and concentration data was verified achieving a high linear correlation coefficient of 0.97 between the true and estimated concentrations for both experiments, which was 0.67 or more than the results using only the head data. Furthermore, the uncertainty of the contaminant plume evolution was successfully evaluated by considering the uncertainties of both the initial plume and the transmissivity distributions, based on their conditional realizations.

Journal Articles

Origin of dissolved organic matter in deep groundwater of marine deposits and its implication for metal binding

Saito, Takumi*; Nishi, Shusaku*; Amano, Yuki; Beppu, Hikari*; Miyakawa, Kazuya

ACS ES&T Water (Internet), 3(12), p.4103 - 4112, 2023/12

JAEA Reports

Acquisition of saltwater infiltration behavior data in unsaturated compacted bentonite

Sato, Hisashi*; Takayama, Yusuke; Suzuki, Hideaki*; Sato, Daisuke*

JAEA-Data/Code 2023-010, 47 Pages, 2023/09

JAEA-Data-Code-2023-010.pdf:1.45MB

When a high-level radioactive waste repository is constructed in a coastal area, it is necessary to fully evaluate the impact of seawater-based groundwater on engineered barriers, including buffer materials. In this report, one-dimensional saltwater infiltration tests were conducted to obtain data to understand the impact of seawater-based groundwater on the migration phenomena of water and solutes in the buffer material during the transient period. As a result, it was confirmed that the infiltration rate increased as the NaCl concentration in the infiltration solution increased. And it was confirmed that the water content ratio distribution changed as the NaCl concentration in the infiltration solution increased. As a result of analysis of the chloride ion concentration of the post-test specimens confirmed that chloride ion enrichment was occurred with infiltration. As a result of verifying the mechanism by which chloride ion enrichment occurs, it was confirmed that the phenomenon of chloride ion enrichment due to infiltration depends on the initial water content ratio.

JAEA Reports

Assessment of the infiltration behaviour of buffer material in seawater-type groundwater environments using a coupled THMC analysis model (Contract research)

Suzuki, Hideaki*; Takayama, Yusuke; Sato, Hisashi*; Watahiki, Takanori*; Sato, Daisuke*

JAEA-Research 2022-013, 41 Pages, 2023/03

JAEA-Research-2022-013.pdf:3.99MB

It is anticipated that the coupled thermal-hydraulic-mechanical and chemical (THMC) processes will occur, involving an interactive process with radioactive decay heat arising from the vitrified waste, infiltration of groundwater from the host rock into the buffer material, swelling pressure of buffer material due to its saturation and chemical reaction between bentonite and pore-water in the near-field of a geological disposal system for high-level radioactive waste repository. In order to evaluate these phenomena in the near-field, the THMC model has been developed. In this study, For the purpose of evaluating the near-field infiltration behavior in seawater-type groundwater environment, a hydraulic model was set in which the permeability of the buffer material change depending on the salt concentration in the pore-water. In order to evaluate the drying phenomenon of the buffer material due to waste heat, a temperature gradient water transfer model was set in consideration of the dependence of temperature and pore-water saturation. The THMC analysis of the in-situ experiment of engineered barrier system (EBS) experiment at the Horonobe Underground Research Laboratory was carried out. The validity of the model was then checked through comparison with measured data.

JAEA Reports

Results of groundwater pressure and hydro-chemical monitoring as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2020-2021)

Takeuchi, Ryuji; Murakami, Hiroaki; Nishio, Kazuhisa*

JAEA-Data/Code 2022-008, 184 Pages, 2023/01

JAEA-Data-Code-2022-008.pdf:8.2MB
JAEA-Data-Code-2022-008-appendix1(DVD-ROM).zip:327.79MB
JAEA-Data-Code-2022-008-appendix2(DVD-ROM).zip:284.46MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory. This report summarizes the results of the groundwater pressure and hydro-chemical monitoring conducted from FY2020 to FY2021.

Journal Articles

Evaluating the effectiveness of a geostatistical approach with groundwater flow modeling for three-dimensional estimation of a contaminant plume

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Journal of Contaminant Hydrology, 251, p.104097_1 - 104097_12, 2022/12

 Times Cited Count:3 Percentile:49.4(Environmental Sciences)

When assessing the risk from an underground environment that is contaminated by radioactive nuclides and hazardous chemicals and planning for remediation, the contaminant plume distribution and the associated uncertainty from measured data should be estimated accurately. While the release history of the contaminant plume may be unknown, the extent of the plume caused by a known source and the associated uncertainty can be calculated inversely from the concentration data using a geostatistical method that accounts for the temporal correlation of its release history and groundwater flow modeling. However, the preceding geostatistical approaches have three drawbacks: (1) no applications of the three-dimensional plume estimation in real situations, (2) no constraints for the estimation of the plume distribution, which can yield negative concentration and large uncertainties, and (3) few applications to actual cases with multiple contaminants. To address these problems, the non-negativity constraint using Gibbs sampling was incorporated into the geostatistical method with groundwater flow modeling for contaminant plume estimation. This method was then tested on groundwater contamination in the Gloucester landfill in Ontario, Canada. The method was applied to three water soluble organic contaminants: 1,4-dioxane, tetrahydrofuran, and diethyl ether. The effectiveness of the proposed method was verified by the general agreement of the calculated plume distributions of the three contaminants with concentration data from 66 points in 1982 (linear correlation coefficient of about 0.7). In particular, the reproduced large spill of organic contaminants of 1,4-dioxane in 1978 was more accurate than the result of preceding minimum relative entropy-based studies. The same peak also appeared in the tetrahydrofuran and diethyl ether distributions approximately within the range of the retardation factor derived from the fraction of organic carbon.

JAEA Reports

Demonstration of the groundwater observation network system in backfilled underground facility

Murakami, Hiroaki; Takeuchi, Ryuji; Iwatsuki, Teruki

JAEA-Technology 2022-022, 34 Pages, 2022/10

JAEA-Technology-2022-022.pdf:3.47MB

Japan Atomic Energy Agency (JAEA) has been conducting the hydro-pressure and hydrochemical monitoring for more than two decades to understand the hydrochemical disturbance due to the excavation of tunnels at Mizunami Underground Research Laboratory (MIU). To understand the environmental influence due to the backfilling of research tunnels that started in 2019, environmental monitoring of groundwater has been performed and recovery status of groundwater is being confirmed. In order to observe the deep-groundwater environment from the ground, the groundwater pressure monitoring and sampling, which have been performed in the research tunnel, are to be performed from the ground. However, backfilling of a large-scale underground facilities such as MIU is globally unprecedented, thus it was necessary to develop a new observation system. Accordingly, we developed a new observation network to observe the environment around the research tunnels of the MIU. This system enables monitoring of groundwater pressure and water sampling of the backfilled tunnel from the ground while utilizing the existing-monitoring system installed in the tunnels. Accordingly, we demonstrated its technology through the environmental monitoring of groundwater. The results of the environmental monitoring and the existing groundwater data of MIU indicate that this system is able to monitor the groundwater environment in the backfilled tunnels.

JAEA Reports

Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2021)

Miyakawa, Kazuya

JAEA-Data/Code 2021-021, 23 Pages, 2022/03

JAEA-Data-Code-2021-021.pdf:2.0MB

In the Horonobe underground research laboratory (HURL) project, groundwater chemistry was analyzed to investigate changes due to the excavation of the underground facility and to review geochemical models until the fiscal year 2019. From the fiscal year 2020, to proceed remaining important issues deduced from the conclusion of the investigations during the fiscal year 2015-2019, primary data such as groundwater chemistry need to be successively acquired. Here, the chemical analysis of 54 groundwater samples in 2021 from boreholes drilled in the 140 m, 250 m, 350 m gallery in the HURL, and water rings settled in three vertical shafts is presented. Analytical results include groundwater chemistry such as physicochemical parameters (pH, electrical conductivity), dissolved ions (Na$$^{+}$$, K$$^{+}$$, Li$$^{+}$$, NH$$_{4}$$$$^{+}$$, Cl$$^{-}$$, Br$$^{-}$$, NO$$_{3}$$$$^{-}$$, SO$$_{4}$$$$^{2-}$$, PO$$_{4}$$$$^{3-}$$, Ca$$^{2+}$$, Mg$$^{2+}$$, Sr$$^{2+}$$, P, Total-Mn, Si, Total-Fe, Al, B, F$$^{-}$$, I$$^{-}$$, alkalinity, total organic carbon, total inorganic carbon, CO$$_{3}$$$$^{2-}$$, HCO$$_{3}$$$$^{-}$$, Ba, Fe$$^{2+}$$, sulfide), $$delta$$$$^{18}$$O, $$delta$$D, and tritium content along with a detailed description of analytical methods.

Journal Articles

Estimation of contaminated materials concentration by a geostatistical method with groundwater flow

Takai, Shizuka; Shimada, Taro; Takeda, Seiji; Koike, Katsuaki*

Joho Chishitsu, 32(3), P. 95, 2021/09

We received best presentation award GEOINROUM-2021 for the presentation on "Estimation of contaminated materials concentration by a geostatistical method with groundwater flow". We submit the comments of impression for getting the Award to Geoinformatics.

JAEA Reports

Data of long term hydro-pressure monitoring on Mizunami Underground Research Laboratory Project for fiscal year 2017-2019

Onoe, Hironori; Takeuchi, Ryuji

JAEA-Data/Code 2020-010, 112 Pages, 2020/10

JAEA-Data-Code-2020-010.pdf:6.22MB
JAEA-Data-Code-2020-010-appendix1(DVD-ROM).zip:169.12MB
JAEA-Data-Code-2020-010-appendix2(DVD-ROM).zip:338.45MB
JAEA-Data-Code-2020-010-appendix3(DVD-ROM).zip:448.05MB

The Mizunami Underground Research Laboratory (MIU) Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), the project is being carried out under the Phase III. The main goals of the MIU Project from Phase I to Phase III are: to establish techniques for investigation, analysis and assessment of the deep geological environment, and to develop a base of engineering for deep underground application. One of the Phase III goals is to construct geological environment models and grasp deep geological changes when expanding the research gallery by research and investigations using research galleries. The long term hydro-pressure monitoring has been continued to achieve the Phase III goals. Furthermore, these monitoring were ceased at the end of FY2019 due to the completion of the MIU project. This report describes the results of the long term hydro-pressure monitoring from April 2017 to March 2020.

JAEA Reports

Development of MIG2DF Version 2

Takai, Shizuka; Kimura, Hideo*; Uchikoshi, Emiko*; Munakata, Masahiro; Takeda, Seiji

JAEA-Data/Code 2020-007, 174 Pages, 2020/09

JAEA-Data-Code-2020-007.pdf:4.23MB

The MIG2DF computer code is a computer program that simulates groundwater flow and radionuclide transport in porous media for the safety assessment of radioactive waste disposal. The original version of MIG2DF was released in 1992. The original code employs a two-dimensional (vertical or horizontal cross-section, or an axisymmetric configuration) finite-element method to approximate the governing equations for density-dependent saturated-unsaturated groundwater flow and radionuclide transport. Meanwhile, for geological disposal of radioactive wastes, landscape evolution such as uplift and erosion needs to be assessed as a long-term geological and climate events, considering site conditions. In coastal areas, the impact to groundwater flow by change of salinity distribution to sea level change also needs to be considered. To deal with these events in the assessment, we have revised the original version of MIG2DF and developed the external program which enables MIG2DF to consider unsteady landscape evolution. In these developments, this report describes an upgrade of MIG2DF (Version 2) and presents the configuration, equations, methods, and verification. This reports also give the explanation external programs of MIG2DF: PASS-TRAC (the particle tracking code), PASS-PRE (the code for dataset preparation), and PASS-POST (the post-processing visualization system).

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study; Project for fiscal year 2019

Onoe, Hironori; Takeuchi, Ryuji

JAEA-Data/Code 2020-008, 41 Pages, 2020/08

JAEA-Data-Code-2020-008.pdf:3.14MB
JAEA-Data-Code-2020-008-appendix(CD-ROM).zip:93.51MB

Japan Atomic Energy Agency (JAEA) has been conducting a wide range of geoscientific research in order to build scientific and technological basis for geological disposal of nuclear wastes. This study aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to FY2004. Since FY2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. Furthermore, these monitoring were ceased at the end of FY2019 due to the completion of the RHS project. This report describes the results of the long term hydro-pressure monitoring for FY2019.

Journal Articles

Method for groundwater monitoring on the disposal of radioactive waste

Murakami, Hiroaki; Iwatsuki, Teruki; Takeuchi, Ryuji; Nishiyama, Nariaki*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(1), p.22 - 33, 2020/06

Geological disposal of radioactive waste requires the large amounts of fundamental technical knowledge throughout the project. Monitoring is carried out to collect site-relevant information for the creation of an environmental database, to assist in the decision-making process, etc. We summarized the current technical level and problems of the groundwater monitoring in the world. Through the research and technology development so far, the technologies have been developed for drilling borehole in the geological environment survey prior to monitoring and the selection of the monitoring site. However, the following technical developments are remaining issues: long-term operation method of monitoring equipment, retrieving method of monitoring equipment after long-term operation, transport method of backfill material for borehole sealing, technical basis for the sealing performance when the borehole-protective casing and strainer tube are left.

Journal Articles

Determination of humic substances in deep groundwater from sedimentary formations by the carbon concentration-based DAX-8 resin isolation technique

Terashima, Motoki; Endo, Takashi*; Miyakawa, Kazuya

Journal of Nuclear Science and Technology, 57(4), p.380 - 387, 2020/04

 Times Cited Count:2 Percentile:21.58(Nuclear Science & Technology)

JAEA Reports

Study of groundwater sampling casing for monitoring device

Okihara, Mitsunobu*; Yahagi, Ryoji*; Iwatsuki, Teruki; Takeuchi, Ryuji; Murakami, Hiroaki

JAEA-Technology 2019-021, 77 Pages, 2020/03

JAEA-Technology-2019-021.pdf:5.33MB

One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on monitoring techniques of the geological environment. In this report, the conceptual design of the monitoring system for groundwater pressure and water chemistry was carried out. The currently installed and used system in research galleries at various depths was re-designed to make it possible to collect groundwater and observe the water pressure on the ground.

JAEA Reports

Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2017-FY2019)

Miyakawa, Kazuya; Mezawa, Tetsuya*; Mochizuki, Akihito; Sasamoto, Hiroshi

JAEA-Data/Code 2020-001, 41 Pages, 2020/03

JAEA-Data-Code-2020-001.pdf:3.75MB
JAEA-Data-Code-2020-001-appendix(CD-ROM).zip:0.34MB

Development of technologies to investigate properties of deep geological environment and model development of geological environment have been pursued in "Geoscientific Research" in the Horonobe Underground Research Laboratory (Horonobe URL) project. A geochemical model which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years from the fiscal year 2017 to 2019, especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.

Journal Articles

Clades of huge phages from across Earth's ecosystems

Al-Shayeb, B.*; Sachdeva, R.*; Chen, L.-X.*; Ward, F.*; Munk, P.*; Devoto, A.*; Castelle, C. J.*; Olm, M. R.*; Bouma-Gregson, K.*; Amano, Yuki; et al.

Nature, 578(7795), p.425 - 431, 2020/02

 Times Cited Count:220 Percentile:99.5(Multidisciplinary Sciences)

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study Project for fiscal year 2018

Onoe, Hironori; Takeuchi, Ryuji

JAEA-Data/Code 2019-010, 41 Pages, 2019/12

JAEA-Data-Code-2019-010.pdf:3.9MB
JAEA-Data-Code-2019-010-appendix(CD-ROM).zip:122.73MB

Japan Atomic Energy Agency (JAEA) has been conducting a wide range of geoscientific research in order to build scientific and technological basis for geological disposal of nuclear wastes. This study aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to FY 2004. Since FY 2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. This report describes the results of the long term hydro-pressure monitoring from April 2018 to March 2019.

JAEA Reports

Study of hydrogeology in the Mizunami Underground Research Laboratory Project; Numerical prediction of recovery behavior of groundwater environment during groundwater filling test and underground facility closure

Onoe, Hironori; Kimura, Hitoshi*

JAEA-Research 2019-001, 57 Pages, 2019/08

JAEA-Research-2019-001.pdf:10.03MB

In this study, predictive simulations were conducted in order to understand recovery behavior of groundwater environment during groundwater filling test and underground facility closure. As a result of predictive simulations of groundwater filling test, difference of groundwater environment changes around the closure test drift according to groundwater filling volume was confirmed quantitatively. As a result of the simulations, groundwater environment changes at 10 years after underground facility closure could be estimated. And, it was shown that up-corning of deep saline water through drift and shaft was occurred if hydraulic conductivity of backfill material is higher than host rock.

451 (Records 1-20 displayed on this page)